85 research outputs found

    Semiclassical Trace Formulae and Eigenvalue Statistics in Quantum Chaos

    Full text link
    A detailed discussion of semiclassical trace formulae is presented and it is demonstrated how a regularized trace formula can be derived while dealing only with finite and convergent expressions. Furthermore, several applications of trace formula techniques to quantum chaos are reviewed. Then local spectral statistics, measuring correlations among finitely many eigenvalues, are reviewed and a detailed semiclassical analysis of the number variance is given. Thereafter the transition to global spectral statistics, taking correlations among infinitely many quantum energies into account, is discussed. It is emphasized that the resulting limit distributions depend on the way one passes to the global scale. A conjecture on the distribution of the fluctuations of the spectral staircase is explained in this general context and evidence supporting the conjecture is discussed.Comment: 48 pages, LaTeX, uses amssym

    A semiclassical Egorov theorem and quantum ergodicity for matrix valued operators

    Full text link
    We study the semiclassical time evolution of observables given by matrix valued pseudodifferential operators and construct a decomposition of the Hilbert space L^2(\rz^d)\otimes\kz^n into a finite number of almost invariant subspaces. For a certain class of observables, that is preserved by the time evolution, we prove an Egorov theorem. We then associate with each almost invariant subspace of L^2(\rz^d)\otimes\kz^n a classical system on a product phase space \TRd\times\cO, where \cO is a compact symplectic manifold on which the classical counterpart of the matrix degrees of freedom is represented. For the projections of eigenvectors of the quantum Hamiltonian to the almost invariant subspaces we finally prove quantum ergodicity to hold, if the associated classical systems are ergodic
    • …
    corecore